Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Talanta ; 275: 126076, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38663070

RESUMEN

Raman spectroscopy serves as a powerful and reliable tool for the characterization of pathogenic bacteria. The integration of Raman spectroscopy with artificial intelligence techniques to rapidly identify pathogenic bacteria has become paramount for expediting disease diagnosis. However, the development of prevailing supervised artificial intelligence algorithms is still constrained by costly and limited well-annotated Raman spectroscopy datasets. Furthermore, tackling various high-dimensional and intricate Raman spectra of pathogenic bacteria in the absence of annotations remains a formidable challenge. In this paper, we propose a concise and efficient deep clustering-based framework (RamanCluster) to achieve accurate and robust unsupervised Raman spectral identification of pathogenic bacteria without the need for any annotated data. RamanCluster is composed of a novel representation learning module and a machine learning-based clustering module, systematically enabling the extraction of robust discriminative representations and unsupervised Raman spectral identification of pathogenic bacteria. The extensive experimental results show that RamanCluster has achieved high accuracy on both Bacteria-4 and Bacteria-6, with ACC values of 77 % and 74.1 %, NMI values of 75 % and 73 %, as well as AMI values of 74.6 % and 72.6 %, respectively. Furthermore, compared with other state-of-the-art methods, RamanCluster exhibits the superior accuracy on handling various complicated pathogenic bacterial Raman spectroscopy datasets, including situations with strong noise and a wide variety of pathogenic bacterial species. Additionally, RamanCluster also demonstrates commendable robustness in these challenging scenarios. In short, RamanCluster has a promising prospect in accelerating the development of low-cost and widely applicable disease diagnosis in clinical medicine.

2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473897

RESUMEN

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Pollos/metabolismo , Subtipo H9N2 del Virus de la Influenza A/fisiología , Sistema de Señalización de MAP Quinasas , Línea Celular , Macrófagos/metabolismo , Factores de Transcripción/metabolismo
3.
Bioresour Technol ; 394: 130246, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145761

RESUMEN

Traditional predictions of microalgal growth states rely on empirical or easily implementable kinetic models, leading to significant biases and elevated cost. This study proposes a kinetic-assisted machine learning method for predicting the growth curve of microalgal biomass under small sample conditions. Firstly, a microalgae growth kinetic model is constructed based on the logistic model. A two-stage kinetic fitting strategy is specified to account for the light-dark ratio. The Box-Behnken method is employed for experimental design. Then, using Two-stage TrAdaboost.R2 algorithm, the kinetic model is utilized as the source domain, and the experimental design data serves as the target domain for training machine learning models. The results indicate that the proposed method outperforms a single machine learning model in terms of prediction and has the potential to rapidly estimate microalgal growth trends under different conditions and accurately predict harvested biomass, potentially reducing the need for laborious, expensive, and time-consuming laboratory trials.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Biomasa , Cinética , Aprendizaje Automático
4.
BMC Musculoskelet Disord ; 24(1): 655, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592278

RESUMEN

BACKGROUND: The existence of a "bare area" at the anterior plateau has been observed in cases where anteromedial and/or anterolateral proximal tibial locking plates are used for fixation in the treatment of hyperextension tibial plateau fractures (HTPF). The objective of this study is to introduce the rim plate fixation technique and evaluate its clinical efficacy. METHODS: A retrospective analysis was conducted on HTPF patients who underwent treatment with a combination of rim plate and proximal tibial locking plate at our hospital between April 2015 and December 2019. All patients were followed up for a minimum of one year. Open reduction and internal fixation were performed using anteromedial/posteromedial and/or anterolateral approaches for all cases. The surgical strategies employed for rim plate fixation were introduced, and both radiographic and clinical outcomes were assessed. RESULTS: Thirteen patients were enrolled in the study, with an average follow-up time of 4.3 years. Satisfactory reduction was achieved and radiographically maintained in all cases. Additionally, all patients exhibited satisfactory clinical functions, as evidenced by a mean hospital for special surgery (HSS) knee score of 96.2 ± 2.0 (range: 90-98). Furthermore, no wound complications or implant breakage were observed in this series. CONCLUSION: The combination of the rim plate and proximal tibial plate proved to be an effective fixation configuration, resulting in satisfactory clinical outcomes.


Asunto(s)
Fracturas de la Tibia , Fracturas de la Meseta Tibial , Humanos , Estudios Retrospectivos , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/cirugía , Tibia , Fijación Interna de Fracturas
5.
Cell Regen ; 12(1): 23, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314549

RESUMEN

Organoids have attracted great interest for disease modelling, drug discovery and development, and tissue growth and homeostasis investigations. However, lack of standards for quality control has become a prominent obstacle to limit their translation into clinic and other applications. "Human intestinal organoids" is the first guideline on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods, inspection rules for human intestinal organoids, which is applicable to quality control during the process of manufacturing and testing of human intestinal organoids. It was originally released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of human intestinal organoids for applications.

6.
Cell Regen ; 12(1): 24, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378693

RESUMEN

Intestinal cancer is one of the most frequent and lethal types of cancer. Modeling intestinal cancer using organoids has emerged in the last decade. Human intestinal cancer organoids are physiologically relevant in vitro models, which provides an unprecedented opportunity for fundamental and applied research in colorectal cancer. "Human intestinal cancer organoids" is the first set of guidelines on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods for human intestinal cancer organoids, which apply to the production and quality control during the process of manufacturing and testing of human intestinal cancer organoids. It was released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practocal protocols, and accelerate the international standardization of human intestinal cancer organoids for clinical development and therapeutic applications.

7.
Macromol Rapid Commun ; 44(10): e2200973, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964967

RESUMEN

Epoxy to copper adhesion supports the reliability of numerous structures in electronic packaging. Compared to substrate pre-treatment, processing and cost considerations are in favor of adhesion promoters loaded in epoxy formulations. In this work, first row transition metal ß-diketonates present such a compelling case when added in epoxy/anhydride resins: over 30% (before moisture aging) and 50% (after moisture aging) enhancement in lap shear strength are found using Co(II) and Ni(II) hexafluoroacetylacetonate. From extensive X-ray photoelectron spectroscopy (XPS) analyses on the adhesively failed sample surfaces, increased population of oxygen-containing functional groups, especially esters, is linked to the adhesion improvement. Assisted by XPS depth profile on the fractured epoxy side and in situ Fourier-transform infrared spectroscopy (FTIR), the previously discovered latent cure characteristics endowed by the metal chelates interacting with phosphine catalysts are regarded pivotal for pacing the anhydride consumption and allowing interfacial esterification reactions to occur. Further examinations on the XPS binding energy shifts and dielectric properties of the doped epoxy also reveal metal-polymer coordination that contribute to the adhesion and moisture resistance properties. These findings should stimulate future research of functional additives targeting at cure kinetics control and polar group coordination ideas for more robust epoxy-Cu joints.


Asunto(s)
Anhídridos , Resinas Epoxi , Resinas Epoxi/química , Reproducibilidad de los Resultados , Polímeros , Metales
8.
BMC Cancer ; 23(1): 266, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959566

RESUMEN

BACKGROUND: Our previous studies have identified CA916798 as a chemotherapy resistance-associated gene in lung cancer. However, the histopathological relevance and biological function of CA916798 in lung adenocarcinoma (LUAD) remains to be delineated. In this study, we further investigated and explored the clinical and biological significance of CA916798 in LUAD. METHODS: The relationship between CA916798 and clinical features of LUAD was analyzed by tissue array and online database. CCK8 and flow cytometry were used to measure cell proliferation and cell cycle of LUAD after knockdown of CA916798 gene. qRT-PCR and western blotting were used to detect the changes of cell cycle-related genes after knockdown or overexpression of CA916798. The tumorigenesis of LUAD cells was evaluated with or without engineering manipulation of CA916798 gene expression. Response to Gefitinib was evaluated using LUAD cells with forced expression or knockdown of CA916798. RESULTS: The analysis on LUAD samples showed that high expression of CA916798 was tightly correlated with pathological progression and poor prognosis of LUAD patients. A critical methylation site in promoter region of CA916798 gene was identified to be related with CA916798 gene expression. Forced expression of CA916798 relieved the inhibitory effects of WEE1 on CDK1 and facilitated cell cycle progression from G2 phase to M phase. However, knockdown of CA916798 enhanced WEE1 function and resulted in G2/M phase arrest. Consistently, chemical suppression of CDK1 dramatically inhibited G2/M phase transition in LUAD cells with high expression of CA916798. Finally, we found that CA916798 was highly expressed in Gefitinib-resistant LUAD cells. Exogenous expression of CA916798 was sufficient to endow Gefitinib resistance with tumor cells, but interference of CA916798 expression largely rescued response of tumor cells to Gefitinib. CONCLUSIONS: CA916798 played oncogenic roles and was correlated with the development of Gefitinib resistance in LUAD cells. Therefore, CA916798 could be considered as a promising prognostic marker and a therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Gefitinib/farmacología , Gefitinib/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Western Blotting , Proliferación Celular , Pronóstico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
9.
Nanoscale ; 14(40): 15193-15202, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36214327

RESUMEN

With the ultra-fast development of personal portable electronic devices, it is important to explore new die attach film (DAF) materials in the limited mounting area and height in order to meet the requirements of a high packaging density and a high operating speed. Graphene-based epoxy nanocomposites are becoming one of the most promising candidates for the next generation of DAFs combining the ultra-high thermal conductivity of graphene, and ultra-strong adhesion of epoxy polymers. However, poor dispersion and weak interfacial connections, due to the overly smooth surface of graphene nanosheets, are still pressing issues that limit their industrial applications. Additionally, pristine graphene nanosheets have only a small effect on improving the glass transition temperature (Tg) of epoxy composites to meet the requirements of DAFs. In this work, melamine-functionalized graphene is synthesized by using a nondestructive ball milling process, which results in greater dispersion and enhancement of the interfacial connections between graphene and epoxy resins demonstrated by both experimental and simulation results. In particular, the aromatic triazine rings of melamine increase Tg in the cured resin, thus improving the thermal stability of DAFs. The melamine-graphene (M-G) epoxy nanocomposites synthesized have a high Tg of 172 °C and an out-of-plane thermal conductivity of 1.08 W m-1 K-1 at 10 wt% loading. This is 6.4 multiples higher than that of neat epoxy. Moreover, M-G epoxy nanocomposites exhibit superb thermal stability, an effective low coefficient of thermal expansion (CTE), low moisture adsorption, and a useful high electrical resistivity. In the DAF performance test, involving experimentation and modeling, the samples present a better cooling capability and heat dissipation. This supports the idea that our findings have potential to be applied in the next generation of DAFs for high-power and high-density 3D packaging.

10.
Nanoscale ; 14(30): 10761-10772, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35790114

RESUMEN

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are important tools for characterizing nanomaterial morphology. Automatic analysis of the nanomaterial morphology in SEM/TEM images plays a crucial role in accelerating research on nanomaterials science. However, achieving a high-throughput automated online statistical analysis of the nanomaterial morphology in various complex SEM/TEM images is still a challenging task. In this paper, we propose a universal framework based on deep learning to perform a fast and accurate online statistical analysis of the nanoparticle morphology in complex SEM/TEM images. The proposed framework consists of three stages that are nanoparticle segmentation using a powerful light-weight deep learning network (NSNet), nanoparticle shape extraction, and statistical analysis. The experimental results show that NSNet in the proposed framework has achieved an accuracy of 86.2% and can process 11 SEM/TEM images per second on an embedded processor. Compared with other semantic segmentation models, NSNet is an optimal choice to ensure that the proposed framework still achieves accurate and fast segmentation even in SEM/TEM images with high background interference, extremely small nanoparticles and dense nanoparticles. Meanwhile, the equivalent diameter and Blaschke shape coefficient of the nanoparticle obtained by the proposed framework are 17.14 ± 5.9 and 0.18 ± 0.04, which are well consistent with those of manual statistical analysis. In short, the proposed framework has a promising future in driving the development of automatic and intelligent analysis technology for nanomaterial morphology.

11.
BMC Musculoskelet Disord ; 23(1): 688, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858882

RESUMEN

BACKGROUND: Long-term fasting for elective surgery has been proven unnecessary based on established guidelines. Instead, preoperative carbohydrate loading 2 h before surgery and recommencing oral nutrition intake as soon as possible after surgery is recommended. This study was performed to analyze the compliance with and effect of abbreviated perioperative fasting management in patients undergoing surgical repair of fresh fractures based on current guidelines. METHODS: Patients with fresh fractures were retrospectively analyzed from the prospectively collected database about perioperative managements based on enhanced recovery of surgery (ERAS) from May 2019 to July 2019 at our hospital. A carbohydrate-enriched beverage was recommended up to 2 h before surgery for all surgical patients except those with contraindications. Postoperatively, oral clear liquids were allowed once the patients had regained full consciousness, and solid food was allowed 1 to 2 h later according to the patients' willingness. The perioperative fasting time was recorded and the patients' subjective comfort with respect to thirst and hunger was assessed using an interview-assisted questionnaire. RESULTS: In total, 306 patients were enrolled in this study. The compliance rate of preoperative carbohydrate loading was 71.6%, and 93.5% of patients began ingestion of oral liquids within 2 h after surgery. The median (interquartile range) preoperative fasting time for liquids and solids was 8 (5.2-12.9) and 19 (15.7-22) hours, respectively. The median postoperative fasting time for liquids and solids was 1 (0.5-1.9) and 2.8 (2.2-3.5) hours, respectively. A total of 70.3% and 74.2% of patients reported no thirst and hunger during the perioperative period, respectively. Logistic regression analysis showed that the preoperative fasting time for liquids was an independent risk factor for perioperative hunger. No risk factor was identified for perioperative thirst. No adverse events such as aspiration pneumonia or gastroesophageal reflux were observed. CONCLUSIONS: In this study of a real clinical practice setting, abbreviated perioperative fasting management was carried out with high compliance in patients with fresh fractures. The preoperative fasting time should be further shortened to further improve patients' subjective comfort.


Asunto(s)
Ayuno , Cuidados Preoperatorios , Procedimientos Quirúrgicos Electivos , Adhesión a Directriz , Humanos , Cuidados Preoperatorios/métodos , Estudios Retrospectivos
12.
ACS Nano ; 16(7): 10088-10129, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35786945

RESUMEN

Flexible in-plane architecture micro-supercapacitors (MSCs) are competitive candidates for on-chip miniature energy storage applications owing to their light weight, small size, high flexibility, as well as the advantages of short charging time, high power density, and long cycle life. However, tedious and time-consuming processes are required for the manufacturing of high-resolution interdigital electrodes using conventional approaches. In contrast, the laser processing technique enables high-efficiency high-precision patterning and advanced manufacturing of nanostructured electrodes. In this review, the recent advances in laser manufacturing and patterning of nanostructured electrodes for applications in flexible in-plane MSCs are comprehensively summarized. Various laser processing techniques for the synthesis, modification, and processing of interdigital electrode materials, including laser pyrolysis, reduction, oxidation, growth, activation, sintering, doping, and ablation, are discussed. In particular, some special features and merits of laser processing techniques are highlighted, including the impacts of laser types and parameters on manufacturing electrodes with desired morphologies/structures and their applications on the formation of high-quality nanoshaped graphene, the selective deposition of nanostructured materials, the controllable nanopore etching and heteroatom doping, and the efficient sintering of nanometal products. Finally, the current challenges and prospects associated with the laser processing of in-plane MSCs are also discussed. This review will provide a useful guidance for the advanced manufacturing of nanostructured electrodes in flexible in-plane energy storage devices and beyond.

13.
Clin. transl. oncol. (Print) ; 24(7): 1333-1346, julio 2022. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-203832

RESUMEN

PurposeTranslocation renal cell carcinoma (tRCC) is a subtype that occurs predominantly in children and young individuals. Metastatic tRCC occurring in young patients is more aggressive than that occurring in older patients, and there are still no effective therapies. Organoids can mimic original tissues and be assessed by high-throughput screening (HTS). We aimed to utilize patient-derived organoids and HTS to screen drugs that can be repurposed for metastatic tRCC with PRCC-TFE3 fusion.MethodsTumor tissues were obtained from treatment-naïve metastatic tRCC patients who underwent surgery. Histopathology and fluorescence in situ hybridization (FISH) confirmed the tRCC. Organoids derived from the dissected tissues were cultured and verified by FISH and RNA-seq. HTS was performed to seek promising drugs, and potential mechanisms were explored by RNA-seq and cell-based studies.ResultsWe successfully established a metastatic tRCC organoid with PRCC-TFE3 fusion, a common fusion subtype, and its characteristics were verified by histopathology, FISH, and RNA-seq. An HTS assay was developed, and the robustness was confirmed. A compound library of 1816 drugs was screened. Eventually, axitinib, crizotinib, and JQ-1 were selected for further validation and were found to induce cell cycle arrest and apoptosis. RNA-seq analyses of posttreatment organoids indicated that crizotinib induced significant changes in autophagy-related genes, consistent with the potential pathogenesis of tRCC.ConclusionsWe established and validated organoids derived from tissues dissected from a patient with metastatic tRCC with PRCC-TFE3 fusion and achieved the HTS process for the first time. Crizotinib might be a targeted therapy worthy of exploration in the clinic for metastatic tRCC with PRCC-TFE3 fusion. Such organoid and HTS assays may represent a promising model system in translational research assisting in the development of clinical strategies.


Asunto(s)
Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Crizotinib/farmacología , Hibridación in Situ , Oncogenes , Translocación Genética , Neoplasias Renales/diagnóstico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética
14.
Front Med (Lausanne) ; 9: 871861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646960

RESUMEN

Objective: Interstitial lung disease (ILD) is a common manifestation of connective tissue disease (CTD) that manifests as several subtypes with significant differences in prognosis. It is necessary to evaluate the efficacy and safety of pirfenidone (PFD) combined with immunosuppressant (IS) in the treatment of CTD-ILD. Methods: A total of 111 patients with CTD-ILD were enrolled, including those with systemic sclerosis (SSc), inflammatory myopathy (IIM), rheumatoid arthritis (RA), and other CTDs (such as systemic lupus erythematosus, primary Sjogren's syndrome, and undifferentiated CTD). After evaluation of the high-resolution computed tomography (HRCT), pulmonary function (PF), and basic disease activity, patients either were or were not prescribed PFD and were followed up regularly for 24 weeks. Results: After 24 weeks of treatment, predicted forced vital capacity (FVC%) in the SSc-PFD group had improved by 6.60%, whereas this value was 0.55% in patients with SSc-no-PFD. The elevation in FVC% was also significant in IIM-PFD over the IIM-no-PFD controls (7.50 vs. 1.00%). The predicted diffusing capacity for carbon monoxide (DLCo%) of RA-PFD was enhanced by 7.40%, whereas that of RA-no-PFD decreased by 5.50%. When performing a subtype analysis of HRCT images, the change in FVC% among patients with SSc with a tendency toward usual interstitial pneumonia (UIP) was higher in those given PFD (SSc-PFD-UIP) than the no-PFD group (8.05 vs. -3.20%). However, in IIM patients with a non-UIP tendency, PFD displayed better therapeutic effects than the control (10.50 vs. 1.00%). DLCo% improved significantly in patients with the PFD-treated RA-non-UIP subtype compared with the patients with no-PFD (10.40 vs. -4.45%). Dichotomizing the patients around a baseline FVC% or DLCo% value of 70%, the PFD arm had a more improved FVC% than the no-PFD arm within the high-baseline-FVC% subgroups of patients with SSc and IIM (6.60 vs. 0.10%, 6.30 vs. 1.10%). In patients with RA-PFD, DLCo% showed a significant increase in the subgroup with low baseline DLCo% compared to that in patients with RA-no-PFD (7.40 vs. -6.60%). Conclusion: The response of PF to PFD varied between CTD-ILD subsets. Patients with SSc and IIM showed obvious improvements in FVC%, especially patients with SSc-UIP and IIM-non-UIP. In RA, the subsets of patients with non-UIP and a lower baseline DLCo% most benefited from PFD.

15.
Pain Res Manag ; 2022: 3458056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711611

RESUMEN

Background: The enhanced recovery after surgery (ERAS) program is aimed to shorten patients' recovery process and improve clinical outcomes. This study aimed to compare the outcomes between the ERAS program and the traditional pathway among patients with ankle fracture and distal radius fracture. Methods: This is a multicenter prospective clinical controlled study consisting of 323 consecutive adults with ankle fracture from 12 centers and 323 consecutive adults with distal radial fracture from 13 centers scheduled for open reduction and internal fixation between January 2017 and December 2018. According to the perioperative protocol, patients were divided into two groups: the ERAS group and the traditional group. The primary outcome was the patients' satisfaction of the whole treatment on discharge and at 6 months postoperatively. The secondary outcomes include delapsed time between admission and surgery, length of hospital stay, postoperative complications, functional score, and the MOS item short form health survey-36. Results: Data describing 772 patients with ankle fracture and 658 patients with distal radius fracture were collected, of which 323 patients with ankle fracture and 323 patients with distal radial fracture were included for analysis. The patients in the ERAS group showed higher satisfaction levels on discharge and at 6 months postoperatively than in the traditional group (P < 0.001). In the subgroup analysis, patients with distal radial fracture in the ERAS group were more satisfied with the treatment (P=0.001). Furthermore, patients with ankle fracture had less time in bed (P < 0.001) and shorter hospital stay (P < 0.001) and patients with distal radial fracture received surgery quickly after being admitted into the ward in the ERAS group than in the traditional group (P=0.001). Conclusions: Perioperative protocol based on the ERAS program was associated with high satisfaction levels, less time in bed, and short hospital stay without increased complication rate and decreased functional outcomes.


Asunto(s)
Fracturas de Tobillo , Recuperación Mejorada Después de la Cirugía , Fracturas del Radio , Adulto , Fracturas de Tobillo/cirugía , Humanos , Tiempo de Internación , Estudios Prospectivos , Fracturas del Radio/cirugía , Resultado del Tratamiento
16.
Sci Total Environ ; 842: 156882, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753448

RESUMEN

Inadequate mixing has been proven to be a major cause of anaerobic digester failure. This study revealed the mechanism of mixing intervals on high-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and sewage sludge (SS). Optimized intermittent mixing time (15 min/h) was determined through computational fluid dynamics (CFD) simulation. Experimental results indicated that the simulated intermittent mixing could shorten digestion time and increase cumulative methane output (366.8 mL/gVS) compared with continuous mixing and unmixing. Mixing could considerably accelerate substrate solubilization and hydrolysis. Maximum rates of acidogenesis (53.35 %) and methanogenesis (49.41 %) were observed with an optimized intermittent mixing (15 min/h). Vigorous mixing induced apoptosis and disrupted syntrophic metabolism, whereas intermittent mixing promoted the syntrophic metabolism between Syntrophomonas and Methanobacterium, and led to an enrichment of genes involved in acidogenic and methanogenic pathways. These findings have important implications for the development of an optimized intermittent mixing strategy for maximizing HS-AcoD efficiency of FW and SS.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Digestión , Alimentos , Metano
17.
Am J Transl Res ; 14(3): 2002-2012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422916

RESUMEN

Chronic kidney disease (CKD) is complex and current treatment remains limited. As we know, glomerular injury plays a dominant role in kidney disease progression. However, accumulating evidence demonstrated that renal tubules, rather than being victims or bystanders, are major initiators in renal fibrosis progression. Renal tubules are rich in mitochondria and mitochondrial dysfunction may participate in renal tubular phenotypic changes and ultimately promote renal fibrosis. Previous studies have proved that artemether displayed renal protective effects, but the mechanisms remain unclear. In this experiment, we showed that artemether reduced urinary protein/creatinine ratio and attenuated renal tubular injury. Both in vivo and in vitro results indicated that artemether could restore renal tubular phenotypic alterations. Meanwhile, the unbalanced expressions of Bax and Bcl-xL in renal tubules were restored by artemether. In addition, artemether also regulated mitochondrial pyruvate metabolism, increased mitochondrial biogenesis, and improved mitochondrial function. Taken together, this study suggested that artemether could attenuate renal tubular injury by regulating mitochondrial biogenesis and function. It has great potential to be translated to the clinic as a therapeutic agent for treating kidney diseases, especially those associated with renal tubular injury.

18.
Ann Transl Med ; 10(3): 138, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35284540

RESUMEN

Background: Pancreatic ductal adenocarcinoma (PDAC) is fatal cancer that causes death. Early metastasis, resistance to chemotherapy, and lack of treatment contribute to a poor prognosis. Therefore, finding new therapeutic targets and biomarkers is a particularly urgent need to improve the survival of PDAC patients. Oligoadenylate synthetases-like (OASL), an antiviral enzyme produced by interferon (IFN), has been found to be associated with the occurrence and development of multiple cancers. However, its role in PDAC has been less well-studied. The value of OASL in PDAC was evaluated by bioinformatics and in vitro experiments. Methods: The expression of OASL was evaluated using the Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) online websites. The survival time was also calculated by GEPIA. The correlation between OASL messenger RNA (mRNA) expression and immune infiltration was analyzed by the Tumor Immune Estimation Resource (TIMER) database. Clinical characteristics were revealed by The Cancer Genome Atlas (TCGA) data. A nomogram and forest plot were constructed based on univariate and multivariate Cox regression. Cell experiments [western blot assays, 3-(4,5-dimethylathiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, transwell assays, flow cytometry assays] were used to verify the value of OASL in PDAC cells (Panc-1, Mia paca-2, and Aspc-1). Results: A higher expression of OASL was observed in PDAC (P<0.05). Patients with increased expression of OASL had worse overall survival (OS; P<0.05) and disease-specific survival (DSS; P<0.05). The expression of OASL was correlated with T stage (P=0.030) and N stage (P=0.004), radiation therapy (P=0.013), primary therapy outcome (P<0.001), residual tumor (P=0.028), and tumor location (P=0.004) by univariate analysis, which also confirmed that OASL was an independent prognostic factor. Moreover, OASL expression was positively associated with neutrophils. In vitro experiments indicated that knockdown of OASL inhibited cell viability and invasion while increasing apoptosis rate. Conclusions: High expression of OASL is associated with poor prognosis. Targeting OASL delays PDAC tumor progression in vitro. We highlight that OASL is a novel prognostic biomarker and therapeutic target of PDAC.

19.
Exp Ther Med ; 23(3): 239, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35222716

RESUMEN

Type 1 diabetes (T1D) is characterized by dysregulated blood glucose and liver metabolism. In previous studies, niclosamide ethanolamine salt (NEN) and artemether (Art) displayed significant hypoglycemic effects. However, their combined therapeutic effects on the liver in T1D have remained elusive. In the present study, T1D mice were established and randomly allocated into groups. Following treatment, the physiological and metabolic parameters, including liver function, glycogen content, glucose-6-phosphatase (G6Pase) protein expression levels, mitochondrial biogenesis and mitochondrial metabolism were analyzed. Compared with the NEN or Art treatments alone, their combination improved glycometabolism and the symptoms of diabetes. Combined treatment with NEN and Art also significantly ameliorated liver injury and increased liver glycogen storage. Furthermore, combinatorial treatment significantly downregulated hepatic G6Pase protein expression levels and regulated mitochondrial biogenesis. NEN and Art increased the respiratory exchange rate and reduced mitochondrial phosphoenolpyruvate carboxykinase and branched-chain α-keto acid dehydrogenase complex protein expression levels, whereby the effects were obviously enhanced by their application as a combined treatment. In conclusion, the present study confirmed that combined treatment with NEN and Art improved glycometabolism and liver function in T1D mice and the therapeutic effects may be partially associated with the regulation of liver mitochondria.

20.
Clin Transl Oncol ; 24(7): 1333-1346, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35118587

RESUMEN

PURPOSE: Translocation renal cell carcinoma (tRCC) is a subtype that occurs predominantly in children and young individuals. Metastatic tRCC occurring in young patients is more aggressive than that occurring in older patients, and there are still no effective therapies. Organoids can mimic original tissues and be assessed by high-throughput screening (HTS). We aimed to utilize patient-derived organoids and HTS to screen drugs that can be repurposed for metastatic tRCC with PRCC-TFE3 fusion. METHODS: Tumor tissues were obtained from treatment-naïve metastatic tRCC patients who underwent surgery. Histopathology and fluorescence in situ hybridization (FISH) confirmed the tRCC. Organoids derived from the dissected tissues were cultured and verified by FISH and RNA-seq. HTS was performed to seek promising drugs, and potential mechanisms were explored by RNA-seq and cell-based studies. RESULTS: We successfully established a metastatic tRCC organoid with PRCC-TFE3 fusion, a common fusion subtype, and its characteristics were verified by histopathology, FISH, and RNA-seq. An HTS assay was developed, and the robustness was confirmed. A compound library of 1816 drugs was screened. Eventually, axitinib, crizotinib, and JQ-1 were selected for further validation and were found to induce cell cycle arrest and apoptosis. RNA-seq analyses of posttreatment organoids indicated that crizotinib induced significant changes in autophagy-related genes, consistent with the potential pathogenesis of tRCC. CONCLUSIONS: We established and validated organoids derived from tissues dissected from a patient with metastatic tRCC with PRCC-TFE3 fusion and achieved the HTS process for the first time. Crizotinib might be a targeted therapy worthy of exploration in the clinic for metastatic tRCC with PRCC-TFE3 fusion. Such organoid and HTS assays may represent a promising model system in translational research assisting in the development of clinical strategies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Anciano , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Crizotinib/farmacología , Humanos , Hibridación Fluorescente in Situ , Neoplasias Renales/diagnóstico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Proteínas de Fusión Oncogénica/genética , Organoides , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...